Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uhlenbeck compactification as a Bridgeland moduli space (2007.12237v1)

Published 23 Jul 2020 in math.AG

Abstract: Let $(X,H)$ be a smooth, projective, polarized surface over $\mathbb{C}$, and let $v \in K_{\mathrm{num}}(X)$ be a class of positive rank. We prove that for certain Bridgeland stability conditions $\sigma = (\mathcal{A}, Z)$ "on the vertical wall" for $v$, the good moduli space $M\sigma(v)$ parameterizing S-equivalence classes of $\sigma$-semistable objects of class $v$ in $\mathcal{A}$ is projective. Moreover, we construct a bijective morphism $M{\mathrm{Uhl}}(v) \to M\sigma(v)$ from the Uhlenbeck compactification of $\mu$-stable vector bundles.

Summary

We haven't generated a summary for this paper yet.