Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Residue Number System Based Winograd Convolution

Published 23 Jul 2020 in cs.LG and stat.ML | (2007.12216v1)

Abstract: Prior research has shown that Winograd algorithm can reduce the computational complexity of convolutional neural networks (CNN) with weights and activations represented in floating point. However it is difficult to apply the scheme to the inference of low-precision quantized (e.g. INT8) networks. Our work extends the Winograd algorithm to Residue Number System (RNS). The minimal complexity convolution is computed precisely over large transformation tile (e.g. 10 x 10 to 16 x 16) of filters and activation patches using the Winograd transformation and low cost (e.g. 8-bit) arithmetic without degrading the prediction accuracy of the networks during inference. The arithmetic complexity reduction is up to 7.03x while the performance improvement is up to 2.30x to 4.69x for 3 x 3 and 5 x 5 filters respectively.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.