Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lower Bounds and Hardness Magnification for Sublinear-Time Shrinking Cellular Automata

Published 23 Jul 2020 in cs.CC and cs.FL | (2007.12048v3)

Abstract: The minimum circuit size problem (MCSP) is a string compression problem with a parameter $s$ in which, given the truth table of a Boolean function over inputs of length $n$, one must answer whether it can be computed by a Boolean circuit of size at most $s(n) \ge n$. Recently, McKay, Murray, and Williams (STOC, 2019) proved a hardness magnification result for MCSP involving (one-pass) streaming algorithms: For any reasonable $s$, if there is no $\mathsf{poly}(s(n))$-space streaming algorithm with $\mathsf{poly}(s(n))$ update time for $\mathsf{MCSP}[s]$, then $\mathsf{P} \neq \mathsf{NP}$. We prove an analogous result for the (provably) strictly less capable model of shrinking cellular automata (SCAs), which are cellular automata whose cells can spontaneously delete themselves. We show every language accepted by an SCA can also be accepted by a streaming algorithm of similar complexity, and we identify two different aspects in which SCAs are more restricted than streaming algorithms. We also show there is a language which cannot be accepted by any SCA in $o(n / \log n)$ time, even though it admits an $O(\log n)$-space streaming algorithm with $O(\log n)$ update time.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.