Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable Initialization Methods for Large-Scale Clustering

Published 23 Jul 2020 in cs.LG and stat.ML | (2007.11937v1)

Abstract: In this work, two new initialization methods for K-means clustering are proposed. Both proposals are based on applying a divide-and-conquer approach for the K-means|| type of an initialization strategy. The second proposal also utilizes multiple lower-dimensional subspaces produced by the random projection method for the initialization. The proposed methods are scalable and can be run in parallel, which make them suitable for initializing large-scale problems. In the experiments, comparison of the proposed methods to the K-means++ and K-means|| methods is conducted using an extensive set of reference and synthetic large-scale datasets. Concerning the latter, a novel high-dimensional clustering data generation algorithm is given. The experiments show that the proposed methods compare favorably to the state-of-the-art. We also observe that the currently most popular K-means++ initialization behaves like the random one in the very high-dimensional cases.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.