Papers
Topics
Authors
Recent
2000 character limit reached

Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive Person Re-Identification

Published 21 Jul 2020 in cs.CV | (2007.10854v1)

Abstract: Unsupervised domain adaptive person Re-IDentification (ReID) is challenging because of the large domain gap between source and target domains, as well as the lackage of labeled data on the target domain. This paper tackles this challenge through jointly enforcing visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification. The local one-hot classification assigns images in a training batch with different person IDs, then adopts a Self-Adaptive Classification (SAC) model to classify them. The global multi-class classification is achieved by predicting labels on the entire unlabeled training set with the Memory-based Temporal-guided Cluster (MTC). MTC predicts multi-class labels by considering both visual similarity and temporal consistency to ensure the quality of label prediction. The two classification models are combined in a unified framework, which effectively leverages the unlabeled data for discriminative feature learning. Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks. For example, under unsupervised setting, our method outperforms recent unsupervised domain adaptive methods, which leverage more labels for training.

Citations (131)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.