Papers
Topics
Authors
Recent
Search
2000 character limit reached

Segmentation of the Left Ventricle by SDD double threshold selection and CHT

Published 21 Jul 2020 in eess.IV and cs.CV | (2007.10665v2)

Abstract: Automatic and robust segmentation of the left ventricle (LV) in magnetic resonance images (MRI) has remained challenging for many decades. With the great success of deep learning in object detection and classification, the research focus of LV segmentation has changed to convolutional neural network (CNN) in recent years. However, LV segmentation is a pixel-level classification problem and its categories are intractable compared to object detection and classification. In this paper, we proposed a robust LV segmentation method based on slope difference distribution (SDD) double threshold selection and circular Hough transform (CHT). The proposed method achieved 96.51% DICE score on the test set of automated cardiac diagnosis challenge (ACDC) which is higher than the best accuracy reported in recently published literatures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.