Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional calibration for false discovery rate control under dependence (2007.10438v1)

Published 20 Jul 2020 in stat.ME, math.ST, and stat.TH

Abstract: We introduce a new class of methods for finite-sample false discovery rate (FDR) control in multiple testing problems with dependent test statistics where the dependence is fully or partially known. Our approach separately calibrates a data-dependent p-value rejection threshold for each hypothesis, relaxing or tightening the threshold as appropriate to target exact FDR control. In addition to our general framework we propose a concrete algorithm, the dependence-adjusted Benjamini-Hochberg (dBH) procedure, which adaptively thresholds the q-value for each hypothesis. Under positive regression dependence the dBH procedure uniformly dominates the standard BH procedure, and in general it uniformly dominates the Benjamini-Yekutieli (BY) procedure (also known as BH with log correction). Simulations and real data examples illustrate power gains over competing approaches to FDR control under dependence.

Summary

We haven't generated a summary for this paper yet.