Treatment Effects with Targeting Instruments
Abstract: Multivalued treatments are commonplace in applications. We explore the use of discrete-valued instruments to control for selection bias in this setting. Our discussion revolves around the concept of targeting: which instruments target which treatments. It allows us to establish conditions under which counterfactual averages and treatment effects are point- or partially-identified for composite complier groups. We illustrate the usefulness of our framework by applying it to data from the Head Start Impact Study. Under a plausible positive selection assumption, we derive informative bounds that suggest less beneficial effects of Head Start expansions than the parametric estimates of Kline and Walters (2016).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.