A new theory of fractional differential calculus (2007.10244v1)
Abstract: This paper presents a self-contained new theory of weak fractional differential calculus in one-dimension. The crux of this new theory is the introduction of a weak fractional derivative notion which is a natural generalization of integer order weak derivatives; it also helps to unify multiple existing fractional derivative definitions and characterize what functions are fractionally differentiable. Various calculus rules including a fundamental theorem calculus, product and chain rules, and integration by parts formulas are established for weak fractional derivatives. Additionally, relationships with classical fractional derivatives and detailed characterizations of weakly fractional differentiable functions are also established. Furthermore, the notion of weak fractional derivatives is also systematically extended to general distributions instead of only to some special distributions. This new theory lays down a solid theoretical foundation for systematically and rigorously developing new theories of fractional Sobolev spaces, fractional calculus of variations, and fractional PDEs as well as their numerical solutions in subsequent works. This paper is a concise presentation of the materials of Sections 1-4 and 6 of reference [9].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.