Papers
Topics
Authors
Recent
Search
2000 character limit reached

The resurgent structure of quantum knot invariants

Published 20 Jul 2020 in hep-th and math.GT | (2007.10190v2)

Abstract: The asymptotic expansion of quantum knot invariants in complex Chern-Simons theory gives rise to factorially divergent formal power series. We conjecture that these series are resurgent functions whose Stokes automorphism is given by a pair of matrices of $q$-series with integer coefficients, which are determined explicitly by the fundamental solutions of a pair of linear $q$-difference equations. We further conjecture that for a hyperbolic knot, a distinguished entry of those matrices equals to the Dimofte-Gaiotto-Gukov 3D-index, and thus is given by a counting of BPS states. We illustrate our conjectures explicitly by matching theoretically and numerically computed integers for the cases of the $4_1$ and the $5_2$ knots.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.