Papers
Topics
Authors
Recent
2000 character limit reached

Kinematic 3D Object Detection in Monocular Video

Published 19 Jul 2020 in cs.CV | (2007.09548v1)

Abstract: Perceiving the physical world in 3D is fundamental for self-driving applications. Although temporal motion is an invaluable resource to human vision for detection, tracking, and depth perception, such features have not been thoroughly utilized in modern 3D object detectors. In this work, we propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization. Specifically, we first propose a novel decomposition of object orientation as well as a self-balancing 3D confidence. We show that both components are critical to enable our kinematic model to work effectively. Collectively, using only a single model, we efficiently leverage 3D kinematics from monocular videos to improve the overall localization precision in 3D object detection while also producing useful by-products of scene dynamics (ego-motion and per-object velocity). We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.

Citations (158)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.