Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transport and spectral features in non-Hermitian open systems

Published 17 Jul 2020 in cond-mat.dis-nn, cond-mat.mes-hall, and physics.optics | (2007.08825v3)

Abstract: We study the transport and spectral properties of a non-Hermitian one-dimensional disordered lattice, the diagonal matrix elements of which are random complex variables taking both positive (loss) and negative (gain) imaginary values: Their distribution is either the usual rectangular one or a binary pair-correlated one possessing, in its Hermitian version, delocalized states, and unusual transport properties. Contrary to the Hermitian case, all states in our non-Hermitian system are localized. In addition, the eigenvalue spectrum, for the binary pair-correlated case, exhibits an unexpected intricate fractallike structure on the complex plane and with increasing non-Hermitian disorder, the eigenvalues tend to coalesce in particular small areas of the complex plane, a feature termed "eigenvalue condensation". Despite the strong Anderson localization of all eigenstates, the system appears to exhibit transport not by diffusion but by a new mechanism through sudden jumps between states located even at distant sites. This seems to be a general feature of open non-Hermitian random systems. The relation of our findings to recent experimental results is also discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.