Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conservative AI and social inequality: Conceptualizing alternatives to bias through social theory (2007.08666v1)

Published 16 Jul 2020 in cs.CY and cs.AI

Abstract: In response to calls for greater interdisciplinary involvement from the social sciences and humanities in the development, governance, and study of artificial intelligence systems, this paper presents one sociologist's view on the problem of algorithmic bias and the reproduction of societal bias. Discussions of bias in AI cover much of the same conceptual terrain that sociologists studying inequality have long understood using more specific terms and theories. Concerns over reproducing societal bias should be informed by an understanding of the ways that inequality is continually reproduced in society -- processes that AI systems are either complicit in, or can be designed to disrupt and counter. The contrast presented here is between conservative and radical approaches to AI, with conservatism referring to dominant tendencies that reproduce and strengthen the status quo, while radical approaches work to disrupt systemic forms of inequality. The limitations of conservative approaches to class, gender, and racial bias are discussed as specific examples, along with the social structures and processes that biases in these areas are linked to. Societal issues can no longer be out of scope for AI and machine learning, given the impact of these systems on human lives. This requires engagement with a growing body of critical AI scholarship that goes beyond biased data to analyze structured ways of perpetuating inequality, opening up the possibility for radical alternatives.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Mike Zajko (2 papers)
Citations (32)