Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Adversarial Learning for RelationalLearning on Multiple Bipartite Graphs (2007.08308v1)

Published 16 Jul 2020 in cs.IR

Abstract: Relational learning aims to make relation inference by exploiting the correlations among different types of entities. Exploring relational learning on multiple bipartite graphs has been receiving attention because of its popular applications such as recommendations. How to make efficient relation inference with few observed links is the main problem on multiple bipartite graphs. Most existing approaches attempt to solve the sparsity problem via learning shared representations to integrate knowledge from multi-source data for shared entities. However, they merely model the correlations from one aspect (e.g. distribution, representation), and cannot impose sufficient constraints on different relations of the shared entities. One effective way of modeling the multi-domain data is to learn the joint distribution of the shared entities across domains.In this paper, we propose Collaborative Adversarial Learning (CAL) that explicitly models the joint distribution of the shared entities across multiple bipartite graphs. The objective of CAL is formulated from a variational lower bound that maximizes the joint log-likelihoods of the observations. In particular, CAL consists of distribution-level and feature-level alignments for knowledge from multiple bipartite graphs. The two-level alignment acts as two different constraints on different relations of the shared entities and facilitates better knowledge transfer for relational learning on multiple bipartite graphs. Extensive experiments on two real-world datasets have shown that the proposed model outperforms the existing methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.