Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling relation paths for knowledge base completion via joint adversarial training (1810.06033v2)

Published 14 Oct 2018 in cs.AI and cs.CL

Abstract: Knowledge Base Completion (KBC), which aims at determining the missing relations between entity pairs, has received increasing attention in recent years. Most existing KBC methods focus on either embedding the Knowledge Base (KB) into a specific semantic space or leveraging the joint probability of Random Walks (RWs) on multi-hop paths. Only a few unified models take both semantic and path-related features into consideration with adequacy. In this paper, we propose a novel method to explore the intrinsic relationship between the single relation (i.e. 1-hop path) and multi-hop paths between paired entities. We use Hierarchical Attention Networks (HANs) to select important relations in multi-hop paths and encode them into low-dimensional vectors. By treating relations and multi-hop paths as two different input sources, we use a feature extractor, which is shared by two downstream components (i.e. relation classifier and source discriminator), to capture shared/similar information between them. By joint adversarial training, we encourage our model to extract features from the multi-hop paths which are representative for relation completion. We apply the trained model (except for the source discriminator) to several large-scale KBs for relation completion. Experimental results show that our method outperforms existing path information-based approaches. Since each sub-module of our model can be well interpreted, our model can be applied to a large number of relation learning tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Chen Li (386 papers)
  2. Xutan Peng (13 papers)
  3. Shanghang Zhang (173 papers)
  4. Hao Peng (291 papers)
  5. Philip S. Yu (592 papers)
  6. Min He (80 papers)
  7. Linfeng Du (7 papers)
  8. Lihong Wang (38 papers)
Citations (1)