Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology-Aware Correlations Between Relations for Inductive Link Prediction in Knowledge Graphs (2103.03642v1)

Published 5 Mar 2021 in cs.LG and cs.CL

Abstract: Inductive link prediction -- where entities during training and inference stages can be different -- has been shown to be promising for completing continuously evolving knowledge graphs. Existing models of inductive reasoning mainly focus on predicting missing links by learning logical rules. However, many existing approaches do not take into account semantic correlations between relations, which are commonly seen in real-world knowledge graphs. To address this challenge, we propose a novel inductive reasoning approach, namely TACT, which can effectively exploit Topology-Aware CorrelaTions between relations in an entity-independent manner. TACT is inspired by the observation that the semantic correlation between two relations is highly correlated to their topological structure in knowledge graphs. Specifically, we categorize all relation pairs into several topological patterns, and then propose a Relational Correlation Network (RCN) to learn the importance of the different patterns for inductive link prediction. Experiments demonstrate that TACT can effectively model semantic correlations between relations, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the inductive link prediction task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiajun Chen (125 papers)
  2. Huarui He (4 papers)
  3. Feng Wu (198 papers)
  4. Jie Wang (480 papers)
Citations (119)

Summary

We haven't generated a summary for this paper yet.