Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Weakly Supervised Object Detection with Progressive Knowledge Transfer (2007.07986v1)

Published 15 Jul 2020 in cs.CV and cs.LG

Abstract: In this paper, we propose an effective knowledge transfer framework to boost the weakly supervised object detection accuracy with the help of an external fully-annotated source dataset, whose categories may not overlap with the target domain. This setting is of great practical value due to the existence of many off-the-shelf detection datasets. To more effectively utilize the source dataset, we propose to iteratively transfer the knowledge from the source domain by a one-class universal detector and learn the target-domain detector. The box-level pseudo ground truths mined by the target-domain detector in each iteration effectively improve the one-class universal detector. Therefore, the knowledge in the source dataset is more thoroughly exploited and leveraged. Extensive experiments are conducted with Pascal VOC 2007 as the target weakly-annotated dataset and COCO/ImageNet as the source fully-annotated dataset. With the proposed solution, we achieved an mAP of $59.7\%$ detection performance on the VOC test set and an mAP of $60.2\%$ after retraining a fully supervised Faster RCNN with the mined pseudo ground truths. This is significantly better than any previously known results in related literature and sets a new state-of-the-art of weakly supervised object detection under the knowledge transfer setting. Code: \url{https://github.com/mikuhatsune/wsod_transfer}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuanyi Zhong (15 papers)
  2. Jianfeng Wang (149 papers)
  3. Jian Peng (101 papers)
  4. Lei Zhang (1689 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.