Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Category Information for Single-Frame Visual Sound Source Separation

Published 15 Jul 2020 in cs.CV | (2007.07984v2)

Abstract: Visual sound source separation aims at identifying sound components from a given sound mixture with the presence of visual cues. Prior works have demonstrated impressive results, but with the expense of large multi-stage architectures and complex data representations (e.g. optical flow trajectories). In contrast, we study simple yet efficient models for visual sound separation using only a single video frame. Furthermore, our models are able to exploit the information of the sound source category in the separation process. To this end, we propose two models where we assume that i) the category labels are available at the training time, or ii) we know if the training sample pairs are from the same or different category. The experiments with the MUSIC dataset show that our model obtains comparable or better performance compared to several recent baseline methods. The code is available at https://github.com/ly-zhu/Leveraging-Category-Information-for-Single-Frame-Visual-Sound-Source-Separation

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.