Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Category Information for Single-Frame Visual Sound Source Separation (2007.07984v2)

Published 15 Jul 2020 in cs.CV

Abstract: Visual sound source separation aims at identifying sound components from a given sound mixture with the presence of visual cues. Prior works have demonstrated impressive results, but with the expense of large multi-stage architectures and complex data representations (e.g. optical flow trajectories). In contrast, we study simple yet efficient models for visual sound separation using only a single video frame. Furthermore, our models are able to exploit the information of the sound source category in the separation process. To this end, we propose two models where we assume that i) the category labels are available at the training time, or ii) we know if the training sample pairs are from the same or different category. The experiments with the MUSIC dataset show that our model obtains comparable or better performance compared to several recent baseline methods. The code is available at https://github.com/ly-zhu/Leveraging-Category-Information-for-Single-Frame-Visual-Sound-Source-Separation

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lingyu Zhu (21 papers)
  2. Esa Rahtu (78 papers)
Citations (9)