Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differential Replication in Machine Learning (2007.07981v1)

Published 15 Jul 2020 in cs.LG and stat.ML

Abstract: When deployed in the wild, machine learning models are usually confronted with data and requirements that constantly vary, either because of changes in the generating distribution or because external constraints change the environment where the model operates. To survive in such an ecosystem, machine learning models need to adapt to new conditions by evolving over time. The idea of model adaptability has been studied from different perspectives. In this paper, we propose a solution based on reusing the knowledge acquired by the already deployed machine learning models and leveraging it to train future generations. This is the idea behind differential replication of machine learning models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.