Papers
Topics
Authors
Recent
Search
2000 character limit reached

A new approach to descriptors generation for image retrieval by analyzing activations of deep neural network layers

Published 13 Jul 2020 in cs.CV | (2007.06624v1)

Abstract: In this paper, we consider the problem of descriptors construction for the task of content-based image retrieval using deep neural networks. The idea of neural codes, based on fully connected layers activations, is extended by incorporating the information contained in convolutional layers. It is known that the total number of neurons in the convolutional part of the network is large and the majority of them have little influence on the final classification decision. Therefore, in the paper we propose a novel algorithm that allows us to extract the most significant neuron activations and utilize this information to construct effective descriptors. The descriptors consisting of values taken from both the fully connected and convolutional layers perfectly represent the whole image content. The images retrieved using these descriptors match semantically very well to the query image, and also they are similar in other secondary image characteristics, like background, textures or color distribution. These features of the proposed descriptors are verified experimentally based on the IMAGENET1M dataset using the VGG16 neural network.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.