Papers
Topics
Authors
Recent
2000 character limit reached

Multiple Imputation and Synthetic Data Generation with the R package NPBayesImputeCat

Published 12 Jul 2020 in stat.CO and stat.AP | (2007.06101v3)

Abstract: In many contexts, missing data and disclosure control are ubiquitous and challenging issues. In particular at statistical agencies, the respondent-level data they collect from surveys and censuses can suffer from high rates of missingness. Furthermore, agencies are obliged to protect respondents' privacy when publishing the collected data for public use. The NPBayesImputeCat R package, introduced in this paper, provides routines to i) create multiple imputations for missing data, and ii) create synthetic data for statistical disclosure control, for multivariate categorical data, with or without structural zeros. We describe the Dirichlet process mixture of products of multinomial distributions model used in the package, and illustrate various uses of the package using data samples from the American Community Survey (ACS). We also compare results of the missing data imputation to the mice R package and those of the synthetic data generation to the synthpop R package.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.