Papers
Topics
Authors
Recent
2000 character limit reached

A spectral algorithm for robust regression with subgaussian rates

Published 12 Jul 2020 in stat.ML, cs.LG, and stat.CO | (2007.06072v1)

Abstract: We study a new linear up to quadratic time algorithm for linear regression in the absence of strong assumptions on the underlying distributions of samples, and in the presence of outliers. The goal is to design a procedure which comes with actual working code that attains the optimal sub-gaussian error bound even though the data have only finite moments (up to $L_4$) and in the presence of possibly adversarial outliers. A polynomial-time solution to this problem has been recently discovered but has high runtime due to its use of Sum-of-Square hierarchy programming. At the core of our algorithm is an adaptation of the spectral method introduced for the mean estimation problem to the linear regression problem. As a by-product we established a connection between the linear regression problem and the furthest hyperplane problem. From a stochastic point of view, in addition to the study of the classical quadratic and multiplier processes we introduce a third empirical process that comes naturally in the study of the statistical properties of the algorithm.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.