Papers
Topics
Authors
Recent
Search
2000 character limit reached

Two-parameter generalisations of Cauchy bi-orthogonal polynomials and integrable lattices

Published 12 Jul 2020 in math-ph, math.MP, and nlin.SI | (2007.05998v1)

Abstract: In this article, we consider the generalised two-parameter Cauchy two-matrix model and corresponding integrable lattice equation. It is shown that with parameters chosen as $1/k_i$ when $k_i\in\mathbb{Z}_{>0}$ ($i=1,\,2$), the average characteristic polynomials admit $(k_1+k_2+2)$-term recurrence relations, which provide us spectral problems for integrable lattices. The tau function is then given by the partition function of the generalised Cauchy two-matrix model as well as Gram determinant. The simplest example with exact solvability is demonstrated.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.