Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Improving Hotspot Detection Through Synthetic Pattern-Based Database Enhancement

Published 12 Jul 2020 in cs.LG and stat.ML | (2007.05879v1)

Abstract: Continuous technology scaling and the introduction of advanced technology nodes in Integrated Circuit (IC) fabrication is constantly exposing new manufacturability issues. One such issue, stemming from complex interaction between design and process, is the problem of design hotspots. Such hotspots are known to vary from design to design and, ideally, should be predicted early and corrected in the design stage itself, as opposed to relying on the foundry to develop process fixes for every hotspot, which would be intractable. In the past, various efforts have been made to address this issue by using a known database of hotspots as the source of information. The majority of these efforts use either Machine Learning (ML) or Pattern Matching (PM) techniques to identify and predict hotspots in new incoming designs. However, almost all of them suffer from high false-alarm rates, mainly because they are oblivious to the root causes of hotspots. In this work, we seek to address this limitation by using a novel database enhancement approach through synthetic pattern generation based on carefully crafted Design of Experiments (DOEs). Effectiveness of the proposed method against the state-of-the-art is evaluated on a 45nm process using industry-standard tools and designs.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.