Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

COBRA: Compression via Abstraction of Provenance for Hypothetical Reasoning (2007.05389v1)

Published 10 Jul 2020 in cs.DB

Abstract: Data analytics often involves hypothetical reasoning: repeatedly modifying the data and observing the induced effect on the computation result of a data-centric application. Recent work has proposed to leverage ideas from data provenance tracking towards supporting efficient hypothetical reasoning: instead of a costly re-execution of the underlying application, one may assign values to a pre-computed provenance expression. A prime challenge in leveraging this approach for large-scale data and complex applications lies in the size of the provenance. To this end, we present a framework that allows to reduce provenance size. Our approach is based on reducing the provenance granularity using abstraction. We propose a demonstration of COBRA, a system that allows examine the effect of the provenance compression on the anticipated analysis results. We will demonstrate the usefulness of COBRA in the context of business data analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.