Papers
Topics
Authors
Recent
2000 character limit reached

COBRA: Compression via Abstraction of Provenance for Hypothetical Reasoning

Published 10 Jul 2020 in cs.DB | (2007.05389v1)

Abstract: Data analytics often involves hypothetical reasoning: repeatedly modifying the data and observing the induced effect on the computation result of a data-centric application. Recent work has proposed to leverage ideas from data provenance tracking towards supporting efficient hypothetical reasoning: instead of a costly re-execution of the underlying application, one may assign values to a pre-computed provenance expression. A prime challenge in leveraging this approach for large-scale data and complex applications lies in the size of the provenance. To this end, we present a framework that allows to reduce provenance size. Our approach is based on reducing the provenance granularity using abstraction. We propose a demonstration of COBRA, a system that allows examine the effect of the provenance compression on the anticipated analysis results. We will demonstrate the usefulness of COBRA in the context of business data analysis.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.