Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Adversarial Training on Different Types of Neural Networks in Deep Learning-based IDSs (2007.04472v1)

Published 8 Jul 2020 in cs.LG and stat.ML

Abstract: Network security applications, including intrusion detection systems of deep neural networks, are increasing rapidly to make detection task of anomaly activities more accurate and robust. With the rapid increase of using DNN and the volume of data traveling through systems, different growing types of adversarial attacks to defeat them create a severe challenge. In this paper, we focus on investigating the effectiveness of different evasion attacks and how to train a resilience deep learning-based IDS using different Neural networks, e.g., convolutional neural networks (CNN) and recurrent neural networks (RNN). We use the min-max approach to formulate the problem of training robust IDS against adversarial examples using two benchmark datasets. Our experiments on different deep learning algorithms and different benchmark datasets demonstrate that defense using an adversarial training-based min-max approach improves the robustness against the five well-known adversarial attack methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rana Abou Khamis (2 papers)
  2. Ashraf Matrawy (36 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.