Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining Natural Language Query Results (2007.04454v1)

Published 8 Jul 2020 in cs.DB

Abstract: Multiple lines of research have developed Natural Language (NL) interfaces for formulating database queries. We build upon this work, but focus on presenting a highly detailed form of the answers in NL. The answers that we present are importantly based on the provenance of tuples in the query result, detailing not only the results but also their explanations. We develop a novel method for transforming provenance information to NL, by leveraging the original NL query structure. Furthermore, since provenance information is typically large and complex, we present two solutions for its effective presentation as NL text: one that is based on provenance factorization, with novel desiderata relevant to the NL case, and one that is based on summarization. We have implemented our solution in an end-to-end system supporting questions, answers and provenance, all expressed in NL. Our experiments, including a user study, indicate the quality of our solution and its scalability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Daniel Deutch (23 papers)
  2. Nave Frost (11 papers)
  3. Amir Gilad (23 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.