Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Kernel-based Prediction of Non-Markovian Time Series (2007.04286v4)

Published 8 Jul 2020 in stat.ME, math.DS, and physics.data-an

Abstract: A nonparametric method to predict non-Markovian time series of partially observed dynamics is developed. The prediction problem we consider is a supervised learning task of finding a regression function that takes a delay embedded observable to the observable at a future time. When delay embedding theory is applicable, the proposed regression function is a consistent estimator of the flow map induced by the delay embedding. Furthermore, the corresponding Mori-Zwanzig equation governing the evolution of the observable simplifies to only a Markovian term, represented by the regression function. We realize this supervised learning task with a class of kernel-based linear estimators, the kernel analog forecast (KAF), which are consistent in the limit of large data. In a scenario with a high-dimensional covariate space, we employ a Markovian kernel smoothing method which is computationally cheaper than the Nystr\"om projection method for realizing KAF. In addition to the guaranteed theoretical convergence, we numerically demonstrate the effectiveness of this approach on higher-dimensional problems where the relevant kernel features are difficult to capture with the Nystr\"om method. Given noisy training data, we propose a nonparametric smoother as a de-noising method. Numerically, we show that the proposed smoother is more accurate than EnKF and 4Dvar in de-noising signals corrupted by independent (but not necessarily identically distributed) noise, even if the smoother is constructed using a data set corrupted by white noise. We show skillful prediction using the KAF constructed from the denoised data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.