Polynomial identities with involution for the algebra of 3 $\times$ 3 upper triangular matrices
Abstract: Let $\mathbb{F}$ be a field of characteristic $p$, and let $UT_n(\mathbb{F})$ be the algebra of $n \times n$ upper triangular matrices over $\mathbb{F}$ with an involution of the first kind. In this paper we describe: the set of all $$-central polynomials for $UT_n(\mathbb{F})$ when $n\geq 3$ and $p\neq 2$ ; the set of all $$-polynomial identities for $UT_3(\mathbb{F})$ when $\mathbb{F}$ is infinite and $p>2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.