Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double Prioritized State Recycled Experience Replay (2007.03961v3)

Published 8 Jul 2020 in cs.LG and stat.ML

Abstract: Experience replay enables online reinforcement learning agents to store and reuse the previous experiences of interacting with the environment. In the original method, the experiences are sampled and replayed uniformly at random. A prior work called prioritized experience replay was developed where experiences are prioritized, so as to replay experiences seeming to be more important more frequently. In this paper, we develop a method called double-prioritized state-recycled (DPSR) experience replay, prioritizing the experiences in both training stage and storing stage, as well as replacing the experiences in the memory with state recycling to make the best of experiences that seem to have low priorities temporarily. We used this method in Deep Q-Networks (DQN), and achieved a state-of-the-art result, outperforming the original method and prioritized experience replay on many Atari games.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Fanchen Bu (21 papers)
  2. Dong Eui Chang (37 papers)
Citations (10)