Papers
Topics
Authors
Recent
Search
2000 character limit reached

Universality and least singular values of random matrix products: a simplified approach

Published 7 Jul 2020 in math.PR | (2007.03595v1)

Abstract: In this note, we show how to provide sharp control on the least singular value of a certain translated linearization matrix arising in the study of the local universality of products of independent random matrices. This problem was first considered in a recent work of Koppel, O'Rourke, and Vu, and compared to their work, our proof is substantially simpler and established in much greater generality . In particular, we only assume that the entries of the ensemble are centered, and have second and fourth moments uniformly bounded away from $0$ and infinity, whereas previous work assumed a uniform subgaussian decay condition and that the entries within each factor of the product are identically distributed. A consequence of our least singular value bound is that the four moment matching universality results for the products of independent random matrices, recently obtained by Koppel, O'Rourke, and Vu, hold under much weaker hypotheses. Our proof technique is also of independent interest in the study of structured sparse matrices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.