Higher-Page Bott-Chern and Aeppli Cohomologies and Applications (2007.03320v2)
Abstract: For every positive integer $r$, we introduce two new cohomologies, that we call $E_r$-Bott-Chern and $E_r$-Aeppli, on compact complex manifolds. When $r=1$, they coincide with the usual Bott-Chern and Aeppli cohomologies, but they are coarser, respectively finer, than these when $r\geq 2$. They provide analogues in the Bott-Chern-Aeppli context of the $E_r$-cohomologies featuring in the Fr\"olicher spectral sequence of the manifold. We apply these new cohomologies in several ways to characterise the notion of page-$(r-1)$-$\partial\bar\partial$-manifolds that we introduced very recently. We also prove analogues of the Serre duality for these higher-page Bott-Chern and Aeppli cohomologies and for the spaces featuring in the Fr\"olicher spectral sequence. We obtain a further group of applications of our cohomologies to the study of Hermitian-symplectic and strongly Gauduchon metrics for which we show that they provide the natural cohomological framework.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.