Papers
Topics
Authors
Recent
Search
2000 character limit reached

Including Image-based Perception in Disturbance Observer for Warehouse Drones

Published 6 Jul 2020 in cs.RO | (2007.02907v1)

Abstract: Grasping and releasing objects would cause oscillations to delivery drones in the warehouse. To reduce such undesired oscillations, this paper treats the to-be-delivered object as an unknown external disturbance and presents an image-based disturbance observer (DOB) to estimate and reject such disturbance. Different from the existing DOB technique that can only compensate for the disturbance after the oscillations happen, the proposed image-based one incorporates image-based disturbance prediction into the control loop to further improve the performance of the DOB. The proposed image-based DOB consists of two parts. The first one is deep-learning-based disturbance prediction. By taking an image of the to-be-delivered object, a sequential disturbance signal is predicted in advance using a connected pre-trained convolutional neural network (CNN) and a long short-term memory (LSTM) network. The second part is a conventional DOB in the feedback loop with a feedforward correction, which utilizes the deep learning prediction to generate a learning signal. Numerical studies are performed to validate the proposed image-based DOB regarding oscillation reduction for delivery drones during the grasping and releasing periods of the objects.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.