Uniqueness of minimal unstable lamination for discretized Anosov flows (2007.02088v1)
Abstract: We consider the class of partially hyperbolic diffeomorphisms $f:M\to M$ obtained as the discretization of topological Anosov flows. We show uniqueness of minimal unstable lamination for these systems provided that the underlying Anosov flow is transitive and not orbit equivalent to a suspension. As a consequence, uniqueness of quasi-attractors is obtained. If the underlying Anosov flow is not transitive we get an analogous finiteness result provided that the restriction of the flow to any of its attracting basic pieces is not a suspension. A similar uniqueness result is also obtained for certain one-dimensional center skew-products.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.