Papers
Topics
Authors
Recent
2000 character limit reached

A Similarity Inference Metric for RGB-Infrared Cross-Modality Person Re-identification

Published 3 Jul 2020 in cs.CV | (2007.01504v1)

Abstract: RGB-Infrared (IR) cross-modality person re-identification (re-ID), which aims to search an IR image in RGB gallery or vice versa, is a challenging task due to the large discrepancy between IR and RGB modalities. Existing methods address this challenge typically by aligning feature distributions or image styles across modalities, whereas the very useful similarities among gallery samples of the same modality (i.e. intra-modality sample similarities) is largely neglected. This paper presents a novel similarity inference metric (SIM) that exploits the intra-modality sample similarities to circumvent the cross-modality discrepancy targeting optimal cross-modality image matching. SIM works by successive similarity graph reasoning and mutual nearest-neighbor reasoning that mine cross-modality sample similarities by leveraging intra-modality sample similarities from two different perspectives. Extensive experiments over two cross-modality re-ID datasets (SYSU-MM01 and RegDB) show that SIM achieves significant accuracy improvement but with little extra training as compared with the state-of-the-art.

Citations (56)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.