Papers
Topics
Authors
Recent
2000 character limit reached

Text-based Emotion Aware Recommender

Published 3 Jul 2020 in cs.IR | (2007.01455v2)

Abstract: We apply the concept of users' emotion vectors (UVECs) and movies' emotion vectors (MVECs) as building components of Emotion Aware Recommender System. We built a comparative platform that consists of five recommenders based on content-based and collaborative filtering algorithms. We employed a Tweets Affective Classifier to classify movies' emotion profiles through movie overviews. We construct MVECs from the movie emotion profiles. We track users' movie watching history to formulate UVECs by taking the average of all the MVECs from all the movies a user has watched. With the MVECs, we built an Emotion Aware Recommender as one of the comparative platforms' algorithms. We evaluated the top-N recommendation lists generated by these Recommenders and found the top-N list of Emotion Aware Recommender showed serendipity recommendations.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.