Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ε-BMC: A Bayesian Ensemble Approach to Epsilon-Greedy Exploration in Model-Free Reinforcement Learning (2007.00869v1)

Published 2 Jul 2020 in cs.LG, cs.RO, and stat.ML

Abstract: Resolving the exploration-exploitation trade-off remains a fundamental problem in the design and implementation of reinforcement learning (RL) algorithms. In this paper, we focus on model-free RL using the epsilon-greedy exploration policy, which despite its simplicity, remains one of the most frequently used forms of exploration. However, a key limitation of this policy is the specification of $\varepsilon$. In this paper, we provide a novel Bayesian perspective of $\varepsilon$ as a measure of the uniformity of the Q-value function. We introduce a closed-form Bayesian model update based on Bayesian model combination (BMC), based on this new perspective, which allows us to adapt $\varepsilon$ using experiences from the environment in constant time with monotone convergence guarantees. We demonstrate that our proposed algorithm, $\varepsilon$-\texttt{BMC}, efficiently balances exploration and exploitation on different problems, performing comparably or outperforming the best tuned fixed annealing schedules and an alternative data-dependent $\varepsilon$ adaptation scheme proposed in the literature.

Citations (15)

Summary

We haven't generated a summary for this paper yet.