Papers
Topics
Authors
Recent
2000 character limit reached

Surface area measures of log-concave functions

Published 30 Jun 2020 in math.MG and math.FA | (2006.16933v2)

Abstract: This paper's origins are in two papers: One by Colesanti and Fragal`a studying the surface area measure of a log-concave function, and one by Cordero-Erausquin and Klartag regarding the moment measure of a convex function. These notions are the same, and in this paper we continue studying the same construction as well as its generalization. In the first half the paper we prove a first variation formula for the integral of log-concave functions under minimal and optimal conditions. We also explain why this result is a common generalization of two known theorems from the above papers. In the second half we extend the definition of the functional surface area measure to the Lp-setting, generalizing a classic definition of Lutwak. In this generalized setting we prove a functional Minkowski existence theorem for even measures. This is a partial extension of a theorem of Cordero-Erausquin and Klartag that handled the case p=1 for not necessarily even measures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.