Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdaSGD: Bridging the gap between SGD and Adam (2006.16541v1)

Published 30 Jun 2020 in cs.LG and stat.ML

Abstract: In the context of stochastic gradient descent(SGD) and adaptive moment estimation (Adam),researchers have recently proposed optimization techniques that transition from Adam to SGD with the goal of improving both convergence and generalization performance. However, precisely how each approach trades off early progress and generalization is not well understood; thus, it is unclear when or even if, one should transition from one approach to the other. In this work, by first studying the convex setting, we identify potential contributors to observed differences in performance between SGD and Adam. In particular,we provide theoretical insights for when and why Adam outperforms SGD and vice versa. We ad-dress the performance gap by adapting a single global learning rate for SGD, which we refer to as AdaSGD. We justify this proposed approach with empirical analyses in non-convex settings. On several datasets that span three different domains,we demonstrate how AdaSGD combines the benefits of both SGD and Adam, eliminating the need for approaches that transition from Adam to SGD.

Citations (6)

Summary

We haven't generated a summary for this paper yet.