Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Nonmonotone Matrix-Free Algorithm for Nonlinear Equality-Constrained Least-Squares Problems

Published 29 Jun 2020 in math.OC, cs.NA, and math.NA | (2006.16340v3)

Abstract: Least squares form one of the most prominent classes of optimization problems, with numerous applications in scientific computing and data fitting. When such formulations aim at modeling complex systems, the optimization process must account for nonlinear dynamics by incorporating constraints. In addition, these systems often incorporate a large number of variables, which increases the difficulty of the problem, and motivates the need for efficient algorithms amenable to large-scale implementations. In this paper, we propose and analyze a Levenberg-Marquardt algorithm for nonlinear least squares subject to nonlinear equality constraints. Our algorithm is based on inexact solves of linear least-squares problems, that only require Jacobian-vector products. Global convergence is guaranteed by the combination of a composite step approach and a nonmonotone step acceptance rule. We illustrate the performance of our method on several test cases from data assimilation and inverse problems: our algorithm is able to reach the vicinity of a solution from an arbitrary starting point, and can outperform the most natural alternatives for these classes of problems.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.