Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Borel-Ritt problem in Beurling ultraholomorphic classes

Published 29 Jun 2020 in math.FA | (2006.16175v2)

Abstract: We give a complete solution to the Borel-Ritt problem in non-uniform spaces $\mathscr{A}-_{(M)}(S)$ of ultraholomorphic functions of Beurling type, where $S$ is an unbounded sector of the Riemann surface of the logarithm and $M$ is a strongly regular weight sequence. Namely, we characterize the surjectivity and the existence of a continuous linear right inverse of the asymptotic Borel map on $\mathscr{A}-_{(M)}(S)$ in terms of the aperture of the sector $S$ and the weight sequence $M$. Our work improves previous results by Thilliez [10] and Schmets and Valdivia [9].

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.