Game Comonads & Generalised Quantifiers
Abstract: Game comonads, introduced by Abramsky, Dawar and Wang and developed by Abramsky and Shah, give an interesting categorical semantics to some Spoiler-Duplicator games that are common in finite model theory. In particular they expose connections between one-sided and two-sided games, and parameters such as treewidth and treedepth and corresponding notions of decomposition. In the present paper, we expand the realm of game comonads to logics with generalised quantifiers. In particular, we introduce a comonad graded by two parameters $n \leq k$ such that isomorphisms in the resulting Kleisli category are exactly Duplicator winning strategies in Hella's $n$-bijection game with $k$ pebbles. We define a one-sided version of this game which allows us to provide a categorical semantics for a number of logics with generalised quantifiers. We also give a novel notion of tree decomposition that emerges from the construction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.