Papers
Topics
Authors
Recent
Search
2000 character limit reached

Non-Convex Exact Community Recovery in Stochastic Block Model

Published 29 Jun 2020 in math.OC and stat.ML | (2006.15843v4)

Abstract: Community detection in graphs that are generated according to stochastic block models (SBMs) has received much attention lately. In this paper, we focus on the binary symmetric SBM -- in which a graph of $n$ vertices is randomly generated by first partitioning the vertices into two equal-sized communities and then connecting each pair of vertices with probability that depends on their community memberships -- and study the associated exact community recovery problem. Although the maximum-likelihood formulation of the problem is non-convex and discrete, we propose to tackle it using a popular iterative method called projected power iterations. To ensure fast convergence of the method, we initialize it using a point that is generated by another iterative method called orthogonal iterations, which is a classic method for computing invariant subspaces of a symmetric matrix. We show that in the logarithmic sparsity regime of the problem, with high probability the proposed two-stage method can exactly recover the two communities down to the information-theoretic limit in $\mathcal{O}(n\log2n/\log\log n)$ time, which is competitive with a host of existing state-of-the-art methods that have the same recovery performance. We also conduct numerical experiments on both synthetic and real data sets to demonstrate the efficacy of our proposed method and complement our theoretical development.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.