Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dynamic Difficulty Adjustment via Fast User Adaptation

Published 28 Jun 2020 in cs.HC | (2006.15545v1)

Abstract: Dynamic difficulty adjustment (DDA) is a technology that adapts a game's challenge to match the player's skill. It is a key element in game development that provides continuous motivation and immersion to the player. However, conventional DDA methods require tuning in-game parameters to generate the levels for various players. Recent DDA approaches based on deep learning can shorten the time-consuming tuning process, but require sufficient user demo data for adaptation. In this paper, we present a fast user adaptation method that can adjust the difficulty of the game for various players using only a small amount of demo data by applying a meta-learning algorithm. In the video game environment user test (n=9), our proposed DDA method outperformed a typical deep learning-based baseline method.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.