Papers
Topics
Authors
Recent
2000 character limit reached

Parallel Weighted Model Counting with Tensor Networks

Published 28 Jun 2020 in cs.DS | (2006.15512v2)

Abstract: A promising new algebraic approach to weighted model counting makes use of tensor networks, following a reduction from weighted model counting to tensor-network contraction. Prior work has focused on analyzing the single-core performance of this approach, and demonstrated that it is an effective addition to the current portfolio of weighted-model-counting algorithms. In this work, we explore the impact of multi-core and GPU use on tensor-network contraction for weighted model counting. To leverage multiple cores, we implement a parallel portfolio of tree-decomposition solvers to find an order to contract tensors. To leverage a GPU, we use TensorFlow to perform the contractions. We compare the resulting weighted model counter on 1914 standard weighted model counting benchmarks and show that it significantly improves the virtual best solver.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.