Papers
Topics
Authors
Recent
2000 character limit reached

IIT Gandhinagar at SemEval-2020 Task 9: Code-Mixed Sentiment Classification Using Candidate Sentence Generation and Selection

Published 25 Jun 2020 in cs.CL | (2006.14465v3)

Abstract: Code-mixing is the phenomenon of using multiple languages in the same utterance of a text or speech. It is a frequently used pattern of communication on various platforms such as social media sites, online gaming, product reviews, etc. Sentiment analysis of the monolingual text is a well-studied task. Code-mixing adds to the challenge of analyzing the sentiment of the text due to the non-standard writing style. We present a candidate sentence generation and selection based approach on top of the Bi-LSTM based neural classifier to classify the Hinglish code-mixed text into one of the three sentiment classes positive, negative, or neutral. The proposed approach shows an improvement in the system performance as compared to the Bi-LSTM based neural classifier. The results present an opportunity to understand various other nuances of code-mixing in the textual data, such as humor-detection, intent classification, etc.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.