A linear time algorithm for constructing orthogonal floor plans with minimum number of bends (2006.14182v1)
Abstract: Let G = (V, E) be a planar triangulated graph (PTG) having every face triangular. A rectilinear dual or an orthogonal floor plan (OFP) of G is obtained by partitioning a rectangle into \mid V \mid rectilinear regions (modules) where two modules are adjacent if and only if there is an edge between the corresponding vertices in G. In this paper, a linear-time algorithm is presented for constructing an OFP for a given G such that the obtained OFP has B_{min} bends, where a bend in a concave corner in an OFP. Further, it has been proved that at least B_{min} bends are required to construct an OFP for G, where \rho - 2 \leq B_{min} \leq \rho + 1 and \rho is the sum of the number of leaves of the containment tree of G and the number of K_4 (4-vertex complete graph) in G.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.