Papers
Topics
Authors
Recent
Search
2000 character limit reached

Time for a Background Check! Uncovering the impact of Background Features on Deep Neural Networks

Published 24 Jun 2020 in cs.CV and cs.LG | (2006.14077v1)

Abstract: With increasing expressive power, deep neural networks have significantly improved the state-of-the-art on image classification datasets, such as ImageNet. In this paper, we investigate to what extent the increasing performance of deep neural networks is impacted by background features? In particular, we focus on background invariance, i.e., accuracy unaffected by switching background features and background influence, i.e., predictive power of background features itself when foreground is masked. We perform experiments with 32 different neural networks ranging from small-size networks to large-scale networks trained with up to one Billion images. Our investigations reveal that increasing expressive power of DNNs leads to higher influence of background features, while simultaneously, increases their ability to make the correct prediction when background features are removed or replaced with a randomly selected texture-based background.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.