Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Investing in Kyle's Single Period Model (2006.13889v1)

Published 24 Jun 2020 in q-fin.CP and q-fin.TR

Abstract: The Kyle model describes how an equilibrium of order sizes and security prices naturally arises between a trader with insider information and the price providing market maker as they interact through a series of auctions. Ever since being introduced by Albert S. Kyle in 1985, the model has become important in the study of market microstructure models with asymmetric information. As it is well understood, it serves as an excellent opportunity to study how modern deep learning technology can be used to replicate and better understand equilibria that occur in certain market learning problems. We model the agents in Kyle's single period setting using deep neural networks. The networks are trained by interacting following the rules and objectives as defined by Kyle. We show how the right network architectures and training methods lead to the agents' behaviour converging to the theoretical equilibrium that is predicted by Kyle's model.

Summary

We haven't generated a summary for this paper yet.