Papers
Topics
Authors
Recent
2000 character limit reached

Focal Loss Analysis of Nerve Fiber Layer Reflectance for Glaucoma Diagnosis

Published 24 Jun 2020 in eess.IV and q-bio.QM | (2006.13522v1)

Abstract: Purpose: To evaluate nerve fiber layer (NFL) reflectance for glaucoma diagnosis. Methods: Participants were imaged with 4.5X4.5-mm volumetric disc scans using spectral-domain optical coherence tomography (OCT). The normalized NFL reflectance map was processed by an azimuthal filter to reduce directional reflectance bias due to variation of beam incidence angle. The peripapillary area of the map was divided into 160 superpixels. Average reflectance was the mean of superpixel reflectance. Low-reflectance superpixels were identified as those with NFL reflectance below the 5 percentile normative cutoff. Focal reflectance loss was measure by summing loss in low-reflectance superpixels. Results: Thirty-five normal, 30 pre-perimetric and 35 perimetric glaucoma participants were enrolled. Azimuthal filtering improved the repeatability of the normalized NFL reflectance, as measured by the pooled superpixel standard deviation (SD), from 0.73 to 0.57 dB (p<0.001, paired t-test) and reduced the population SD from 2.14 to 1.78 dB (p<0.001, t-test). Most glaucomatous reflectance maps showed characteristic patterns of contiguous wedge or diffuse defects. Focal NFL reflectance loss had significantly higher diagnostic sensitivity than the best NFL thickness parameter (overall, inferior, or focal loss volume): 53% v. 23% (p=0.027) in PPG eyes and 100% v. 80% (p=0.023) in PG eyes, with the specificity fixed at 99%. Conclusions: Azimuthal filtering reduces the variability of NFL reflectance measurements. Focal NFL reflectance loss has excellent glaucoma diagnostic accuracy compared to the standard NFL thickness parameters. The reflectance map may be useful for localizing NFL defects.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.